FQG: Cumulative Hits in the Conference Final

May-15-2017 21-24-14 phaneuf hits guentzal

Throughout the playoffs (quarterfinals, semifinals), I have analyzed whether a team’s hits for and against were indicative of their success. Studying a team’s Corsi for percentage per game and expected goals for per game alongside their cumulative hits can help us spot high-level trends.

We’re seeking to determine the accuracy of the narrative that many hockey traditionalists love – that a team must increase their hitting to succeed in their quest for the Stanley Cup. This has been studied in recent seasons, including 2014-15 season, 2015 playoffs, and 2016 playoffs, yet no decisive correlation was found between a team’s increased hitting and success. So far in the first two rounds of the playoffs, this seems to hold true.

Continue reading

How Indicative are hits in the 2017 Stanley Cup Playoffs: Semifinals

After the conclusion of the 2017 Stanley Cup Quarterfinals, I looked at whether a team’s hits for and against were indicative on their play. By looking at a team’s Corsi for percentage per game and expected goals for per game, against their cumulative hits as their first round progressed, it could be observed whether a team’s production dropped due to being outhit.

As it was explained in the first part of this series, many hockey traditionalists point to an increased number of hits as a necessity to compete for the Stanley Cup. There is a preconceived notion by some hockey minds that a team will become worn out if they are consistently outhit in the playoffs and subsequently will not be able maintain their production. However, in the 2014-15 season, 2015 playoffs, and 2016 playoffs, no decisive correlation was found between success and hits.

Continue reading

Improving Opposition Analysis by Examining Tactical Matchups

On Monday, I introduced some work on quantifying and identifying team playing styles, which built upon my earlier work on identifying individual playing styles. Today we’re going to discuss how to make this data actionable.

What are the quantifiable traits of successful teams? What plays are they executing that makes them successful? How can we use data to then build a style of play that is more successful than what we’re currently doing? The way we bridge the gap between front office and behind the bench is by providing data to improve their matchup preparation, lineup optimization, and enhance tactical decisions.

This is what I mean by actionable: applying data-driven analysis and decision-making inside the coach’s room and on the ice. All data is from 5v5 situations and is either from the Passing Project or from Corsica.

Continue reading

How Indicative are hits in the 2017 Stanley Cup Playoffs: Quarter-finals

As the Stanley Cup Playoffs progress, the intensity rises. This often leads to more physical play, thus an increase of hits. Hockey traditionalists, including players and coaches, have often pointed to increased hits as a part of playoff hockey. Some teams have altered their strategy to embody a more physical style, simply because it is the playoffs.

The impact of hitting has been explored before during the 2014-15 season, the 2015 playoffs (both by Garret Hohl), and the 2016 playoffs (by @yolo_pinyato). However, none found a decisive correlating success to hits.

Continue reading

Identifying Playing Styles with Clustering

One of the aspects of player performance that is discussed ad nauseam is chemistry. How well do certain players elevate their performance with one player or another due to some inherent ability to find the other on the ice? To know what a teammate is going to do? However, very little has been done to analyze this phenomenon. In this piece, I posit that by identifying playing styles, something that’s been done in the NBA, we can quantify how well certain players will complement one another.

All data is from 5v5 situations from the 2015 – 2016 and current season, totaling almost 900 games from the Passing Project volunteers and Corey Sznajder. Special thanks to Asmae for her guidance throughout this piece.

I want to stress that this is a first foray into this type of analysis and simply because a player has a different style than what I’ve named (which are relatively arbitrary) it doesn’t mean they are necessarily better than another player. Players may have similar styles, but some will simply be more effective due to their ability. Finally, given that each day we accumulate more data, a player with a smaller sample size could find themselves in a different cluster in future analysis.

Continue reading