#RITHAC 2017 Slides & Video

Yesterday, the third annual Rochester Institute of Technology Hockey Analytics Conference was held. Below are links to the slides for each presenter, as well as links to a stream of the morning and afternoon sessions. Please refer to this post for the time of each person’s talk or panel. More detailed recaps are undoubtedly coming from people, so this is simple a reference for streams and slides for those that missed the event or would like to revisit certain talks.

Continue reading

Improving Opposition Analysis by Examining Tactical Matchups

On Monday, I introduced some work on quantifying and identifying team playing styles, which built upon my earlier work on identifying individual playing styles. Today we’re going to discuss how to make this data actionable.

What are the quantifiable traits of successful teams? What plays are they executing that makes them successful? How can we use data to then build a style of play that is more successful than what we’re currently doing? The way we bridge the gap between front office and behind the bench is by providing data to improve their matchup preparation, lineup optimization, and enhance tactical decisions.

This is what I mean by actionable: applying data-driven analysis and decision-making inside the coach’s room and on the ice. All data is from 5v5 situations and is either from the Passing Project or from Corsica.

Continue reading

Identifying Team Playing Styles with Clustering

Last time, I looked at individual playing styles by clustering players together based on various passing metrics. Today, I’m going to use a similar approach to identify team playing styles and what we can learn about them. I got the idea watching this video on NBA offensive styles (stick tap to @dtmaboutheart for the link). It’s been sitting in my unfinished pile for a while, but I was spurred on to finish it by some comments made about the Washington Capitals and Pittsburgh Penguins series, which I will delve into tomorrow. Today’s piece is to going provide examples of how passing metrics can provide more detailed and actionable scouting reports for a team’s offensive and defensive tendencies.

All data is form 5v5 situations and is either from the Passing Project or Corsica.

Continue reading

Identifying Playing Styles with Clustering

One of the aspects of player performance that is discussed ad nauseam is chemistry. How well do certain players elevate their performance with one player or another due to some inherent ability to find the other on the ice? To know what a teammate is going to do? However, very little has been done to analyze this phenomenon. In this piece, I posit that by identifying playing styles, something that’s been done in the NBA, we can quantify how well certain players will complement one another.

All data is from 5v5 situations from the 2015 – 2016 and current season, totaling almost 900 games from the Passing Project volunteers and Corey Sznajder. Special thanks to Asmae for her guidance throughout this piece.

I want to stress that this is a first foray into this type of analysis and simply because a player has a different style than what I’ve named (which are relatively arbitrary) it doesn’t mean they are necessarily better than another player. Players may have similar styles, but some will simply be more effective due to their ability. Finally, given that each day we accumulate more data, a player with a smaller sample size could find themselves in a different cluster in future analysis.

Continue reading

Mikael Granlund, Playing Behind the Net, & Predicting Goals

Recently, I showed how passing data is a better predictor of future player scoring than existing public metrics. In this piece, I’m going to show that by accounting for shot quality via passing metrics we can more accurately predict a team and player’s on-ice goal-scoring rates. I’m going to do this by quantifying the pre-shot movement that occurs when a player is on the ice. Finally, I’ll spend some time discussing certain forwards/teams that caught my eye. All data is from 5v5 situations and special thanks to Dr. McCurdy for pulling the on-ice player data for me. All non-passing project data is from Corsica.

Continue reading

Redefining Defensemen based on Transitional Play

Last time, I showed how passing data is a better predictor of future player scoring than existing public metrics. In this piece, I’m going to spend some time talking about how we can more reliably evaluate offensive and defensive contributions from defensemen, which has been difficult due to a lack of data. Not only due to a lack of data, but from a lack of flexibility regarding the identity of the position. Traditionally thought of as existing to defend and “make a good first pass,” I feel this limits the scope of both how we evaluate the position and its responsibilities.

In order to better evaluate defensemen, we need to identify specific metrics that we can tie to future goals. In looking at entry assists (a pass occurring in the neutral or defensive zones that precedes a shot), both for and against, we can quantify how effective that defensemen is at generating offense in transition, as well as suppressing those chances. The importance of those things at the team level is something I’ve previously discussed (transition here and defensive work here with Matt Cane). Once we identify these metrics as having a strong impact on future scoring and goal-suppression, we naturally then reevaluate what the proper roles are for a defensemen, which in turn forces us to reevaluate how we evaluate them.

Personally, I’d like to see us think of them more as fullbacks or midfielders in soccer (this is part of a larger concept of redefining positions and responsibilities, which will be posted in the next month or so, I hope). There are still going to be various types of players based on their individual skill set and team tactics, but supporting play, overlapping on the attack, and distribution are all pillars of what teams should look for. Let’s get to it.

All data is from 5v5 situations and special thanks to Dr. McCurdy for pulling the on-ice player data for me. All non-passing project data is from Corsica.

Continue reading

Expected Primary Points are a better predictor of future scoring than Shots, Points

While I have spent a lot of time over the last several months digging into how we can quantify passages of play and inform better tactical decisions, it’s time to revisit how passing impacts scoring at the player level. We have only been using half of the picture in terms of individual shots and goals for player evaluation. Sure, we have primary and total points, but primary assists aren’t a very useful metric. The rate at which players create shot assists also appeared to have significantly more value than a player’s own shots in some analysis I did last year.

This piece will release individual passing data for the 2014 – 2015, 2015 – 2016, and 2016 – 2017 seasons, the latter of which tracked by Corey Sznajder, the former tracked by myself and many others. However, it is important to provide context and meaning to the numbers rather than simply inundate you with data.

Continue reading

Analyzing One-Timers: The Most Dangerous Shot in the Bag

Very little has been written about one-timers because, surprise, the NHL doesn’t track it. However, this is something we’ve been tracking for the last couple of seasons and it is worth a short post to investigate the value in this type of shot. Additionally, it is also worthwhile to dig into whether or not it is a skill to set up a one-timer for a teammate, or if it is strictly a shooter shoot. Lastly, is this type of shot more predictive than ordinary slap shots? Deflections? The standard wrist shot?

Continue reading

Predicting Shot Differentials for NCAA Players

While there has been an increase in the type of data that’s available to us on prospects, we are still lacking across all developmental leagues. More importantly, and this is particularly true for the NCAA, player-level data still eludes us, even when there is team-level data present. To get at the context with which a player performs and the factors governing his or her environment, we are left with estimates of things like ice time and quality of competition/teammates.

While this hasn’t stopped us from making advances to enhance traditional scouting and prospect analysis, having player-level shot metrics would be a wonderful piece of data to have when evaluating their performance. This article will look at a method to predict those numbers.

Special thanks to DTMAboutHeart and Matt Cane for their feedback and guidance at certain steps in this process.

Continue reading