Revisiting Relative Shot Metrics – Part 2

In part 1, I described three “pen and paper” methods for evaluating players based on performance relative to their teammates. As I mentioned, there is some confusion around what differentiates the relative to team (Rel Team) and relative to teammate (Rel TM) methods (it also doesn’t help that we’re dealing with two metrics that have the same name save four letters). I thought it would be worthwhile to compare them in various ways. The following comparisons will help us explore how each one works, what each tells us, and how we can use them (or which we should use). Additionally, I’ll attempt to tie it all together as we look into some of the adjustments I covered at the end of part 1.

A quick note: WOWY is a unique approach, which limits it’s comparative potential in this regard. As a result, I won’t be evaluating/comparing the WOWY method further. However, we’ll dive into some WOWYs to explore the Rel TM metric a bit later.

Rel Team vs. Rel TM

Note: For the rest of the article, the “low TOI” adjustment will be included in the Rel TM calculation. Additionally, “unadjusted” and “adjusted” will indicate if the team adjustment is implemented. All data used from here on is from the past ten seasons (’07-08 through ’16-17), is even-strength, and includes only qualified skaters (minimum of 336 minutes for Forwards and 429 minutes for Defensemen per season as estimated by the top 390 F and 210 D per season over this timeframe).

Below, I plotted Rel Team against both the adjusted and unadjusted Rel TM numbers. I have shaded the points based on each skater’s team’s EV Corsi differential in the games that skater played in:

relattive_cow_comp Continue reading

Revisiting Relative Shot Metrics – Part 1

Relative shot metrics have been around for years. I realized this past summer, however, that I didn’t really know what differentiated them, and attempting to implement or use a metric that you don’t fully understand can be problematic. They’ve been available pretty much anywhere you could find hockey numbers forever and have often been regarded as the “best” version of whatever metric they were used for to evaluate skaters (Corsi/Fenwick/Expected Goals). So I took it upon myself to gain a better understanding of what they are and how they work. In part 1, I’ll summarize the various types of relative shot metrics and show how each is calculated. I’ll be focusing on relative to team, WOWY (with or without you), and the relative to teammate methods.

A Brief Summary

All relative shot metrics whether it be WOWY, relative to team (Rel Team), or relative to teammate (Rel TM) are essentially trying to answer the same question: how well did any given player perform relative to that player’s teammates? Let’s briefly discuss the idea behind this question and why it was asked in the first place. Corsi, and its usual form of on-ice Corsi For % (abbreviated CF%) is easily the most recognizable statistic outside of the standard NHL provided boxscore metrics. A player’s on-ice CF% accounts for all shots taken and allowed (Corsi For / (Corsi For + Corsi Against)) when that player was on the ice (if you’re unfamiliar please check out this explainer from JenLC). While this may be useful for some cursory or high-level analysis, it does not account for a player’s team or a player’s teammates.

Continue reading

An Introduction To New Tracking Technology

The first significant breakthrough in hockey analytics occurred in the mid-2000’s when analysts discovered the importance of Corsi in describing and predicting future success. Since that time, we’ve seen the creation of expected goals, WAR models, and more. Many have cited that the next big breakthrough in hockey analytics will come once the NHL is able to provide tracking data. We’ve already seen some of the incredible applications of the MLB’s Statcast data and the NBA’s SportVu data. Unfortunately, the NHL has no immediate plans to publicly provide this data and as such, many analysts have decided to manually obtain the data.

Continue reading

Expected Goals Data Release

bergy goalBack in October 2015,  @asmae_t and I first unveiled an Expected Goals model which proved to be a better predictor of team and player goalscoring performance than any other public model to date. Thanks to the feedback of the community, a few adjustments and corrections were made since then. The changes were the following:

  1. Score state was a variable that was accounted for in the model but was not explicitly mentioned in the original write-up. Recall that after accounting for all variables, including score state, it was found that a shot attempted by a trailing team still has a lower likelihood of resulting in a goal than a shot taken by a leading team.
  2. The shot multiplier in Part I of the original write-up was adjusted using a historical weighted average instead of in-season data. Thus, a 2016 shot multiplier for example would be based on the average of the regressed goals (rGoals) and regressed shots (rShots) of 2014 and 2015.  This adjustment improved the model’s performance against score-adjusted Corsi and goals % in predicting future scoring, as seen in the graph below. We thank @Cane_Matt again for pointing out this error. Corrected Version of xG

Continue reading

Why I’m Supporting Micah Blake McCurdy’s Work at Hockey Viz


A couple days ago, Micah Blake McCurdy made his first step towards The Great Unknown. It’s a decision hanging on a number of questions we always ask ourselves in the analytics community: What is my work worth to me? What is my work worth to others? For as much time as my spend on it, how can I make sure my work means something, and my time rewarded? How do I make sure my work stays exactly that: mine?

For the past decade, a number of powerful minds have navigated The Great Unknown, finding that apprehensive teams were only willing to commit peanuts and, on rare occasions, real salaried work after a partnership of a couple years. What made The Great Unknown even more of a mystery was the disappearance of sites, and data, and “stats” groups peddling other people’s work (usually in poor or incorrect fashion), and the discovery by some stats analysts that teams had been tracking data in ways that were curious, tedious, unhelpful. When the so-called Summer of Analytics occurred, The Great Unknown had the curtain pulled back a little bit: we started knowing who was getting hired where. But that peek exposed the still-immense uncertainty of the work available with some teams, and opened a new area of intrigue: analytics writing.

So why is what Micah is doing so important?

Continue reading

Prospect Cohort Success – Evaluation of Results

2008 NHL Entry Draft Stage.JPG
2008 NHL Entry Draft Stage” by Alexander Laney. Licensed under CC BY-SA 3.0 via Commons.

Identifying future NHLers is critical to building a successful NHL team. However, with a global talent pool that spans dozens of leagues worldwide,  drafting is also one of the most challenging aspects of managing an NHL team. In the past, teams have relied heavily on their scouts, hoping to eek out a competitive advantaging by employing those who can see what other scouts miss. Quite a challenge for many scouts that may only be able to watch a prospect a handful of times in a season. While there has been some progress in the past few years with teams incorporating data into their overall decision making, from the outside, the incorporation of data driven decision making in prospect evaluation has been minimal.

To address this, Josh Weissbock and myself have developed a tool for evaluating prospect potential which we call Prospect Cohort Success (PCS), with the help of others in the analytics community including Hockey Graphs Supreme Leader, Garret Hohl.

Continue reading

Sunday Notes: September 13, 2015

Math lecture at TKK.JPG
Math lecture at TKK” by Tungsten – photo taken by Tungsten. Licensed under Public Domain via Commons.

Welcome to Sunday Notes, where we try to rehash important developments occurring on Hockey Graphs and elsewhere in the CORSI twitter league in less than 500 words. I’m sorry if we forgot about your post, or misconstrued what you said. We don’t care. Don’t @ us. Just do better next time. – Asmaen

Continue reading

NHL Player Physical Peak Estimation

File:Hockey. Canadiens. Mosdell . Getliffe . Filion BAnQ P48S1P12151.jpg

Probably want to keep that middle guy out for the next shift. Photo by Conrad Poirier, via Wikimedia Commons

Determining NHL player peaks has frequently focused on production and, occasionally, wrinkles are added to account for the steeper fall-off for goal-scoring as opposed to playmaking. Generally, the peak appears to be around the ages 23-25, with some skills like shooting exhibiting fairly early peaks and others a bit later.

Poking around some spreadsheets, I came across data that I’ve always meant to get to: time per shift. The NHL has been keeping a measure of average time per shift for players going back to 1997-98, so I licked my chops over the robust data set. The “Why?” for looking at it, I think, takes us to an interesting place. To some degree, time per shift can allude to a player’s stamina and overall physical fitness; it can also allude to the coaching staff’s assessment of their performance — though there are plenty of shifts ended on the fly in a hockey game. What’s more, we simply haven’t had a lot of player peak estimations using time on-ice, and when done carefully, I think we can capture something like a total physical peak for players.

Continue reading