Expected Goals Model with Pre-Shot Movement, Part 3: 2018-2019 Data

Yesterday we looked at the team and skater results from the 2016 – 2018 data that was used to train the xG model. That’s a pretty robust dataset, but it’s unfortunately a bit out of date. People care about this season, and past years are old news. So let’s take a look at the data that Corey Sznajder has tracked for 2018 – 2019 so far.

Continue reading

Expected Goals Model with Pre-Shot Movement, Part 2: Historic Team and Player Results

Intro

In the last post, we introduced a new expected goals (xG) model. It incorporates pre-shot movement, which made it more accurate than existing public xG models when predicting which shots would be goals. However, we use xG models for far more than looking at individual shots. By aggregating expected goals at the player and team level, we can get a better sense of how each of them performs.

Continue reading

Expected Goals Model with Pre-Shot Movement, Part 1: The Model

There are few questions in hockey analytics more fundamental than who played well. Consequently, a large portion of hockey analysis has been focused on how to best measure results. This work is some of the most well-known work in “fancy stats”; when evaluating players and teams, many people who used to look at goals scored moved to focusing on Corsi and then expected goals (xG).

The concept of an xG model is simple: look at the results of past shots to predict whether or not a particular shot will become a goal. Then credit the player who took the shot with that “expected” likelihood of scoring on that shot, regardless of whether or not it went in. Several such models have been developed, including by Emmanuel Perry, Evolving Wild, Moneypuck, and many others.

However, there remains additional room for improving these models. They do impressive work based on the available play-by-play (pbp) data, but that only captures so much. There are big gaps in information, and we know that filling them would make us better at predicting goals.

Perhaps the biggest gap is pre-shot movement. We know that passes before a shot affect the quality of the scoring chance, but the pbp data does not include them. Thankfully, Corey Sznajder’s data does. While it does not cover every single shot over multiple seasons, it is a substantial dataset; when I pulled the data for this model, it had roughly half of the 2016-2017 and 2017-2018 seasons included: 72 thousand shots from 1,085 games. While the number of games tracked varies by team, we have at least 43 for every team except Vegas, for which we have 26. We can use this data to build the first public xG model that incorporates passes.

Continue reading

Why Possession is the Key to Zone Exits

If there’s anything you know from neutral zone analytics, it’s probably this: carry-in zone entries are better than dump-ins. In the linked piece, Eric Tulsky finds that “maintaining possession of the puck at the blue line (carrying or passing the puck across the line) means a team will generate more than twice as much offense as playing dump and chase”.

But what about zone exits? Is possession equally important there? Work by Jen Lute Costello suggests that it is, but her data was limited to one playoff series. Today, I’ll expand on her work to show that maintaining possession is crucial for successful zone exits, and breakouts should be structured with this in mind.

Continue reading

Introduction to the Transition Project

This is one of my favorite plays:

Almost every team is coached to make their opponent fight for every inch. Skjei’s end-to-end rush cuts through those defenses and leaves his team in a much better position than when he started.

But just how much better off did he leave them? How does that compare to alternative outcomes? And which players are the best at making these plays? We have unanswered questions about transitional play. We’d like to study them in more detail, but the gif above doesn’t appear anywhere in the league’s play-by-play data to help conduct analysis.

Continue reading