Using Data to Inform Shorthanded Neutral Zone Decisions

The following is data is all at 4-on-5 with both goalies in their nets. A special thanks to Evolving Hockey for data and their scraper.

In March of 2019, Mike Pfeil coined the term “powerkill” at the Seattle Hockey Analytics Conference. It was much more of a small excerpt from his whole presentation, but it seemed to motivate Meghan Hall and Alison Lukan. In the coming months, Lukan would write about how the Columbus Blue Jackets utilized an aggressive approach in their penalty killing system, while Hall would present at RITSAC and OTTHAC before they finally came together to present at the Columbus Blue Jackets Hockey Analytics Conference in February.

Looking to continue researching this phenomenon, I set out to answer a few questions I had. In order to give shots some added context beyond what the NHL’s public data supplies, throughout the last few months, I tracked shot assists and where possessions leading to shots had started. As a side benefit, I was also able to filter out shots that didn’t appear to exist, were recorded incorrectly, or where the possession started at 4-on-4.

In 2016, Matt Cane developed a metric to approximate penalty kill aggressiveness by combining penalty kill controlled and failed entries for, and dividing them by the entries a penalty kill faces from their opponent. The theory behind that being that penalty kills that attempt to control more entries into the offensive zone are inherently more aggressive. Hall and Lukan also found that a penalty kill’s rate of controlled entries has a strong correlation to the rate at which they take shots.

Part of the reason these two stats have such a strong correlation is that the vast majority of shots require a zone entry. Not including rebound shots, 82% of 4v5 shots stemmed from possessions starting outside of the offensive zone over the course of the 2019-20 season.

zones

Continue reading

Lateral Puck Movement in the NZ

Research shows that lateral/”east-west” puck movement in the offensive zone is beneficial to increasing one’s odds of scoring. But I have now heard from people in various positions within the hockey industry on why it might also be useful to generate east-west puck movement in the neutral zone. The theories – focused on lateral passing, lane changes and stretch passes, respectively – all boiled down to one point: When you rush the puck up ice, the defending team will focus on that side, leaving the other side of the ice somewhat more open, so there might be open ice to exploit.

Continue reading

The Importance of Pressure for a Successful Forecheck

Most of my posts so far have talked about zone exits from the perspective of the team trying to breakout out of their defensive zone. Now, let’s flip the script and discuss the team on the forecheck. This team does not have possession of the puck, but they are in their offensive zone, which is an advantage. So, how can they regain control?

Continue reading

Team Level Zone Exits

From past posts, we have a general sense of the basics of zone exits: zone exits are important because they get you out of your zone and towards an opportunity to score. The key to a successful zone exit is maintaining possession, ideally by avoiding the temptation to dump the puck out.

But so far, we have only looked at zone exits league wide. Most fans care about one particular team more than the rest, but we haven’t looked at team-level results at all. So today, let’s see how each team has performed at zone exits over the past three seasons.

Continue reading

Expected Goals Model with Pre-Shot Movement, Part 3: 2018-2019 Data

Yesterday we looked at the team and skater results from the 2016 – 2018 data that was used to train the xG model. That’s a pretty robust dataset, but it’s unfortunately a bit out of date. People care about this season, and past years are old news. So let’s take a look at the data that Corey Sznajder has tracked for 2018 – 2019 so far.

Continue reading

Expected Goals Model with Pre-Shot Movement, Part 1: The Model

There are few questions in hockey analytics more fundamental than who played well. Consequently, a large portion of hockey analysis has been focused on how to best measure results. This work is some of the most well-known work in “fancy stats”; when evaluating players and teams, many people who used to look at goals scored moved to focusing on Corsi and then expected goals (xG).

The concept of an xG model is simple: look at the results of past shots to predict whether or not a particular shot will become a goal. Then credit the player who took the shot with that “expected” likelihood of scoring on that shot, regardless of whether or not it went in. Several such models have been developed, including by Emmanuel Perry, Evolving Wild, Moneypuck, and many others.

However, there remains additional room for improving these models. They do impressive work based on the available play-by-play (pbp) data, but that only captures so much. There are big gaps in information, and we know that filling them would make us better at predicting goals.

Perhaps the biggest gap is pre-shot movement. We know that passes before a shot affect the quality of the scoring chance, but the pbp data does not include them. Thankfully, Corey Sznajder’s data does. While it does not cover every single shot over multiple seasons, it is a substantial dataset; when I pulled the data for this model, it had roughly half of the 2016-2017 and 2017-2018 seasons included: 72 thousand shots from 1,085 games. While the number of games tracked varies by team, we have at least 43 for every team except Vegas, for which we have 26. We can use this data to build the first public xG model that incorporates passes.

Continue reading

Introduction to the Transition Project

This is one of my favorite plays:

Almost every team is coached to make their opponent fight for every inch. Skjei’s end-to-end rush cuts through those defenses and leaves his team in a much better position than when he started.

But just how much better off did he leave them? How does that compare to alternative outcomes? And which players are the best at making these plays? We have unanswered questions about transitional play. We’d like to study them in more detail, but the gif above doesn’t appear anywhere in the league’s play-by-play data to help conduct analysis.

Continue reading

An Introduction To New Tracking Technology

The first significant breakthrough in hockey analytics occurred in the mid-2000’s when analysts discovered the importance of Corsi in describing and predicting future success. Since that time, we’ve seen the creation of expected goals, WAR models, and more. Many have cited that the next big breakthrough in hockey analytics will come once the NHL is able to provide tracking data. We’ve already seen some of the incredible applications of the MLB’s Statcast data and the NBA’s SportVu data. Unfortunately, the NHL has no immediate plans to publicly provide this data and as such, many analysts have decided to manually obtain the data.

Continue reading

Measuring the Importance of Individual Player Zone Entry Creation

The importance of zone entries in hockey statistical analysis will come as no secret to anyone familiar with the public community at large. Back in 2011, then-Broad Street Hockey writer (and current Carolina Hurricanes manager of analytics) Eric Tulsky initiated a video tracking project that became the first organized foray into the zone entry question, and later resulted in a Sloan Analytics Conference presentation. Tulsky determined that “controlled” entries (those that came with possession of the puck) resulted in more than twice the number of average shots than “uncontrolled” entries, a key finding that provided concrete direction for additional research on the topic.

Tulsky’s initial Sloan project was limited, however, due to lack of data – only two teams had their full regular seasons tracked, and just two others reached the half-season threshold. As a result, further research would wait until a larger dataset became available. Luckily for the community, Corey Sznajder undertook a massive tracking project encompassing the entire 2013-14 season, and released the data to the public. Using this, there were more advances, including Garik16’s work on team zone performance and the repeatability of player performance in each individual zone.

Continue reading