Combining Manually-Tracked Data with Play-by-Play Data

This post assumes beginner knowledge of R.

If you’ve ever analyzed hockey data, then you’re probably familiar with the NHL’s Real Time Scoring System, which produces what’s more commonly known as play-by-play data. These data are publicly available and allow us to see every event recorded by the NHL in a given game. Shown below are selected details about the first 10 events from two games on February 18, 2019: Tampa Bay at Columbus and Vegas at Colorado.

Continue reading

The Importance of Pressure for a Successful Forecheck

Most of my posts so far have talked about zone exits from the perspective of the team trying to breakout out of their defensive zone. Now, let’s flip the script and discuss the team on the forecheck. This team does not have possession of the puck, but they are in their offensive zone, which is an advantage. So, how can they regain control?

Continue reading

Team Level Zone Exits

From past posts, we have a general sense of the basics of zone exits: zone exits are important because they get you out of your zone and towards an opportunity to score. The key to a successful zone exit is maintaining possession, ideally by avoiding the temptation to dump the puck out.

But so far, we have only looked at zone exits league wide. Most fans care about one particular team more than the rest, but we haven’t looked at team-level results at all. So today, let’s see how each team has performed at zone exits over the past three seasons.

Continue reading

Visualizing and Quantifying Passing on the Power Play

Visualizing passes isn’t easy in hockey. In any given KHL game, there are between 700 and 900 Passes. Somewhere between 65% to 85% are successful*. If you wanted to focus on just the successful ones, you’d have to find a way to meaningfully and concisely represent 500-700 events. Let’s start with something simpler: the Power play. If we further restrict our target to passes by single teams during 5v4 power plays in the OZ, we still get between 40 and 50 passes per game per team. Looking at two random KHL games, you can see that this is still quite a lot of passes:

There are some trends to be picked up on, but it’s not very clean. And any semi-serious opposition scouting (especially of special teams) will take into account multiple games, which then leads to an unidentifiable mess when plotted.

Continue reading