Visualizing and Quantifying Passing on the Power Play

Visualizing passes isn’t easy in hockey. In any given KHL game, there are between 700 and 900 Passes. Somewhere between 65% to 85% are successful*. If you wanted to focus on just the successful ones, you’d have to find a way to meaningfully and concisely represent 500-700 events. Let’s start with something simpler: the Power play. If we further restrict our target to passes by single teams during 5v4 power plays in the OZ, we still get between 40 and 50 passes per game per team. Looking at two random KHL games, you can see that this is still quite a lot of passes:

There are some trends to be picked up on, but it’s not very clean. And any semi-serious opposition scouting (especially of special teams) will take into account multiple games, which then leads to an unidentifiable mess when plotted.

Continue reading

Second Units and Zone Entries: Why teams should go all-in on the 4 forward power play

Embed from Getty Images

Using 4 forwards on the power play is generally a good strategy. Four forward units take more shots, score more often on those shots, and post a better goal differential than 3 forward groups do.

It’s also a strategy that has become more popular over the last few years. 4 forward units have accounted for roughly 56% of the 5-on-4 ice-time this season, up 4% from last year and more than 15% from 5 years ago.[1]

Continue reading

Measuring the Importance of Structure on the Power Play

Embed from Getty Images

tl;dr

  • We can measure a team’s power play structure using shot location data, creating a Power Play Structure Index that quantifies their ability to establish and shoot from a structured formation.
  • A Team’s Power Play Structure Index is a stronger predictor of future goal scoring than past goals, but weaker than shot attempt generation.
  • When examined together with shot attempt generation, power play structure is a significant predictor of future goals, although slightly less important than shot attempt generation.
  • A team’s structure index can provide valuable additional insight into why certain power plays succeed or fail.

Edit 2017-02-15: An earlier version of this piece had a small error in the regression coefficient for PP Structure Index. While the article previously indicated the coefficient was -0.19, it should in fact be -0.30. The text both above and below has now been corrected.

Introduction

The importance of structure in a team’s power play is something that’s really easy to see. We’ve all watched a power play executing at the top of its game: the puck flies from player to player, leaving defenders pivoting in place to try to keep up. Each shot looks exactly like it was diagramed by the coach, with attackers working to set up a specific shot from a specific player in a specific location.

A solid structure doesn’t just look good; it actually produces better results. Arik Parnass has written extensively on the importance of structure to power play success, showing that teams who get set up in a dangerous formation score more goals than those who don’t.

Continue reading