By the numbers: thinking about the World Championships a different way

This post was co-authored by Shayna Goldman and Alison Lukan

As part of the global response to the COVID-19 pandemic, the 2020 World Championship was cancelled. But, we still wanted to see how rosters for an international tournament with NHLers could have shaken out. While it’s easy to just put together an All Star lineup for most countries, we wanted to add a twist: each country’s roster could only include NHL players and each team had to be compliant with the 2019-20 salary cap. 

So what does this look like? A little bit about our process, first.

Six teams will compete in our fictitious tournament: Canada, USA, Sweden, Finland, Russia, and Europe. Each roster consists of 12 forwards, six defenders, and two goaltenders. Because we were limited to NHL players, talent from outside of those core countries in Europe was combined to form one super team. 

Continue reading

Introducing Offensive Sequences and The Hockey Decision Tree

If you ever work for a hockey team as an analyst, you could be facing two very recurrent questions from the coaching staff. The first one is very practical: How can analytics help us work better and faster? The second one is: What is the real contribution of each player? Meaning beyond the usual on-ice “possession” stats like Corsi or Expected Goals and individual production metrics such as shots taken, scoring chances, expected goals created, zone exits, entries, or even high-danger passes (passes that end or go through the slot). But those events were not yet statistically linked to each other. Finding a way to provide answers to both questions was my goal for the last few months, and the solution was: I needed to split the game in “Sequences”.

Video coaches often break down game tape to highlight certain plays, such as a rush-based attack or a zone exit under pressure. I wanted to do the same and divide a game in as many parts as necessary, or “Sequences”. Roughly, every time the puck changes possession between teams, a new Sequence” begins. That’s about 250 Sequences per game.

Looking at this from the point of view of the team that owns the puck, offensive Sequences extend from the moment a team gets control of the puck and starts moving forward, to the moment she loses it for good, and it must include a shot attempt in the process to have a positive value. How does this work? Let’s say a player gets the puck back in your defensive zone, you try a zone exit but fail. Sequence starts over, there can only be one exit recorded in the Sequence. So he tries another zone exit and succeed, gets into the offensive zone, the team records a couple of shot attempts, loses the puck and if the other teams gets enough control of it to try a zone exit, it means the end of the Sequence.

How does this help? Well, the basic principle is to see the total value of a Sequence. We’re use Expected Goals as our measure of “value”. To do that, we add the Expected Goals of the shot attempts in the Sequence. For example, a Sequence with two shot attempts:

  • A high danger shot: 0.23 Expected Goals
  • A shot from the blue line: 0.01 Expected Goals
  • Total Sequence value: 0.23 + 0.01 = 0.24 Expected Goals

Sequences

Continue reading

Which League is Best?

This work is co-authored with Madeline Gall.

While scouting for some sports is straightforward (college football → NFL), scouting for the NHL can be a more arduous process. With players from over 45+ international ice hockey leagues, each with its own regulations and difficulties, how can one adequately assess the quality of a player’s performance? Comparisons between leagues are not easily made; 18 points for an eighteen year old playing against other eighteen year olds in a minor league should not be attributed the same value as 18 points for an eighteen year old playing against veterans in the NHL. 

There have been other attempts to account for this, including player translation variables, like that of Rob Vollman’s hockey translation factors, and Gabriel Desjardin’s NHL Equivalency Ratings (NHLe). Desjardin’s NHLe previously tackled the issue of comparing and predicting player performance for League-to-NHL transitions (moving from another league into the NHL). It was great for a quick, general comparison and certainly has its advantages (easy and quick to calculate), but there are some drawbacks to its method. For starters, it didn’t necessarily control for team quality, position, and age. Translation factors are calculated using statistics from players who have played at least 20 games in the given league before playing at least 20 in the NHL. That means there’s a lot of valuable data about these in-between transitions that aren’t being used. 

In this project, we introduce a new method for comparing and projecting player performance across leagues using an adjusted z-score metric that would account for these drawbacks. This metric controls for factors such as age, league, season, and position that affect a player’s P/PG metric, and could be applied to any league of interest. This new metric is necessary as there are many characteristics that vary from league to league. Due to the different playing styles and opponent difficulty, there is not one consistent metric to make comparable evaluations of player performance for hockey leagues around the world. Other factors such as goalie strength, penalty rates, and rink dimensions are also inconsistent across international leagues. Scenarios could occur in which players of similar strength could appear to have seemingly different performances.

Continue reading