Introducing Weighted Points Above Replacement – Part 2

In part 1, I laid out the basis for Weighted Points Above Average (wPAA). Now it’s time to change the baseline from average to replacement level. A lot has been written about replacement level, but I’ll try to summarize: replacement level is the performance we would expect to see from a player a team could easily sign or call up to “replace” or fill a vacancy. In theory it is the lowest tier NHL player.

Continue reading

Introducing Weighted Points Above Replacement – Part 1

Aggregate statistics in sports have always fascinated me. I might go so far as to say my need to better understand how these metrics work is one of the reasons I became interested in sports statistics in the first place. I also feel the process of developing them raises an incredible number of important questions, especially with a sport like hockey. Rarely are these questions raised in a more succinct and blunt manner than when a new aggregate stat first emerges and people see how good Oscar Klefbom is.

These questions mainly focus on how to value, weight, and interpret the various metrics that are available. For instance, should we value primary points per 60 more than relative Corsi for/against? How much more? Is there a difference? What’s the difference? Should we use some sort of feeling or intuition to determine which stats we like best? How do we address the issue of different metrics being used in conjunction to evaluate players? There have been multiple attempts to “answer” these questions (and many others) in hockey – Tom Awad’s Goal Versus Threshold (GVT), Michael Schuckers and Jim Curro’s Total Hockey Rating (THoR), Hockey Reference’s Point Shares, War-On-Ice’s (A.C. Thomas and Sam Ventura) WAR/GAR model, Dom Galamini’s HERO Charts, Dom Luszczyszyn’s Game Score, and most recently Dawson Sprigings’ WAR/GAR model… (Emmanuel Perry is also in the process of constructing a WAR model that I’m very excited about).

Continue reading

A New Look at Aging Curves for NHL Skaters (part 2)

In part 1 of this series, I looked at how NHL skaters age using the delta method with Dawson Sprigings’ WAR model. As mentioned in my previous article, there is still one major problem with the delta method that needs to be addressed: survivorship bias. The “raw” charts presented in part 1 are quite informative, but they’re missing a correction for this bias. Before we can draw conclusions about what this new WAR metric tells us about NHL skater aging, we need to figure out how to correct for survivorship bias.

Continue reading

A New Look at Aging Curves for NHL Skaters (part 1)

How do NHL players age? When do they peak? How quickly do they decline? Questions about player aging in the NHL have been debated for years, and an incredible amount of research has already been done trying to answer these questions. Within the past 3 years, however, it seems a general consensus has been reached. Rob Vollman summarizes this quite well in his book Stat Shot: The Ultimate Guide to Hockey Analytics: “Most players hit their peak age by age 24 or 25 then decline gradually until age 30, at which point their performance can begin to tumble more noticeably with the risk of absolute collapse by age 34 or 35.”

The vast majority of this work has been done looking at points, goals, shot attempts, special teams, etc., but the release of Dawson Sprigings’ WAR (Wins Above Replacement) model gives us a new statistic from which we can derive value and, possibly, a new way to look at how NHL skaters age. It seems only natural that we’d revisit the NHL player aging question using this new model. If you’re unfamiliar with his WAR model, you can read all about it here.

Continue reading