NHL Analytic Teams’ State of the Union

Pure-mathematics-formulæ-blackboard

Fandom means a lot of different things to different people. But one thing unites us all: we hope our favorite team will win, and spend a great deal of time thinking how they can.

For those of us who dig a little deeper on the “how” side and use analytics, we hope that our work will eventually make its way to a front office. In some ways, it already has: numerous “hockey bloggers” hirings have been made recently.

But how many and for which teams?

With some research, I’ve culled a working document on all analytics hires for NHL teams and how they may be using analytics. The following descriptions comes from a variety of sources including Craig Custance’s Great Analytics Rankings [Paywall], fellow bloggers from across the internet, media reports, word of mouth and anonymous insiders.

It should be noted that just because a team has made an “analytics hiring”, it doesn’t necessarily mean that they value their input or use the analysis provided properly. In fact, hires can be made simply for PR reasons, and some teams may even give analytics tasks as secondary duties to staff members who do not posses any formal background in the subject. Teams may also have hired private firms providing proprietary data, which in reality may not provide any tangible, verifiable value than what is free and readily available online.

Continue reading

2014-15 Season Preview: The Atlantic Division

Image from Sarah Connors via Wikimedia Commons

Finishing last season with an average of 87.6 points per team, the Atlantic/Flortheast Division was the worst in the NHL. I see that gap widening, not narrowing, in 2014-15.

The battle at the top of the division will, in my eyes, come down to two teams: the Boston Bruins and the Tampa Bay Lightning. The Bruins have placed either first or second in their division (the Atlantic or the former Northeast) in each of the past four seasons. The 2nd place Lightning finished a full 16 points behind the Bruins in 2013-14, but a strong off-season combined with a full season of Steven Stamkos and rookie Jonathan Drouin potentially making an impact has them near even money with the Bruins.

Continue reading

Gordie Howe vs. Bobby Orr vs. Wayne Gretzky vs. Sidney Crosby: Not Your Typical WOWY

Photo by "Djcz", via Wikimedia Commons

Photo by “Djcz”, via Wikimedia Commons

With or Without You analysis, often referred to as WOWY, frequently involves either comparing the performance of a team or particular players when a single player is and isn’t playing. While the approach is a risky one (sample size is a pretty big issue), it can actually be quite telling when you collect enough data.

The value of modern WOWY is that you can definitely get data from precisely the seconds a player played apart from the seconds they weren’t on the ice. Historical WOWY, on the other hand, cannot do much better than taking data from games a player played versus games they didn’t. To this end, then, I wanted to see if historical WOWY can tell us much of anything, and the best way to do that is to focus on players that are undisputed in their value. In this case, I went for WOWYs of the big guns, four of the best players across the eras of NHL history: Gordie Howe, Bobby Orr, Wayne Gretzky, Sidney Crosby.
Continue reading

NHL Defensemen and Shooting Contributions back to 1967-68

File:Defenseman Ray Bourque 1979.jpg

Photo by Dave Stanley via Wikimedia Commons

I have kicked around this data in the past, most prominently in my theoretical post on offensive systems, but I really wanted to get further into the intricacies of defensemen and their historical place in team shooting (among other offensive contributions). By looking at how much a defenseman contributes to a team’s shot generation (expressed as a percentage of team shots in the games a player played, or %TSh), we can draw some interesting comparisons across NHL eras, but I haven’t yet explored how the role of the defenseman has (or hasn’t) evolved from the Expansion Era to the present, nor have I taken a look at some of the more exceptional defense shooting teams. Let me correct that now.

Continue reading

Outperforming PDO: Mirages and Oases in the NHL

Above is the progressive stabilization (game-by-game, cumulatively) of all-situations PDO over time for the 30 NHL teams. It’s a demonstration of the pull of PDO towards the average (1000, or the addition of team SV% and shooting percentage with decimals removed), and it gives you a sense of the end game: an actual spread of PDO, from roughly 975 to roughly 1025. In other words, if you were just to use this data, you could probably conclude that it’s not outside expectations for a team to outperform 1000 by about 25 (or 2.5%) on either side.

That’s all well and good, but PDO is a breakdown of two very different things, a team’s shooting and goaltending, two variables that understandably have very little to do with each other (they are slightly related because rink counting bias usually affects both). Shooting percentage can hinge on a number of contextual variables, though its reliance on a team’s player population usually can bring it a bit in-line with league averages. Save percentage, on the other hand, hinges on one player, and what’s more past performances suggest that a single goaltender can quite significantly outperform expectations. In this piece, I want to jump into the sliding variables of PDO, and what we can expect from teams, but first I want to begin with why I’m working with all-situations PDO.

Continue reading

Friday Quick Graphs: Toronto Maple Leafs, Chicago Blackhawks, Edmonton Oilers, and Boston Bruins Shot Distributions, 5 Years

What you see above are the even-strength shots-for locations for the near-indisputable top team of the last five seasons (Chicago Blackhawks) versus the near-indisputable worst team of the last five seasons. This is a sort of visual anti-shot quality argument, a demonstration of why, across these five seasons, the indisputable #1 team would shoot 9.9% while the indisputable #30 team would shoot 9.6%. Notice the horseshoe design, about where defensemen normally sit, then jump up into the play. Notice the dense cluster around the high slot. All teams make these plays, try to make them, the difference being some are better at possessing and moving the puck to make the shot. What’s the primary difference above? The amount of shots.

None of the above charting is possible without Greg Sinclair’s awesome site, Super Shot Search. Bookmark it, use it, love it.

Oh, hey, what if I was to look at the teams with the best and worst save percentage these last five years? Would they look different in even-strength shots-against? Well, let’s see, Toronto and Boston:

There is a difference here, I think. I mean, the initial difference are the numbers, Boston’s SV% (92.1%) versus Toronto’s (89.5%). Another difference is it seems the two charts maintain roughly the same shot distributions, but flip ends of the rink. Not much to dwell on there. One thing I will say, that could relate to the SV% discrepancy, is that it doesn’t appear that Toronto records many, if any, shots from right along the boards. Now, I don’t know if this is a recorder’s error or not; it seems to me it’s pretty hard to get a shot from right tight along the boards. Maybe one recorder does it based on where the body of the skater was located, I don’t know. Or…Toronto does allow shooters to come in a little tighter, and Boston owns the center ice a bit better. Could that explain a near-3% discrepancy? I don’t think so; we know Toronto’s had worse goaltending. But it might’ve “helped.”

NHL Team History, Possession, and Winning the Stanley Cup

Photo by “JulieAndSteve”, via Wikimedia Commons

Gabe Desjardins dropped a comment over at my Tumblr awhile ago, asking me if I could put together a graph expanding on a metric I came up with, 2-Period Shot Percentage (or 2pS%). 2pS% is an historical possession metric that takes shots-for and shots-against in just the first two periods of a game and expresses it as a percentage for the team being analyzed. The idea was that I was trying to get a rough possession measure from the period that would avoid score effects, or the tendency for teams with a lead to sit on the lead and thus give up shots late in the game. Having recently completed a database of period-by-period shot data going back to 1952-53, I have been able to test this metric a bit and the results were good for 2pS% as a possession measure. Returning to Gabe’s request, he wanted to know if I could chart the 2pS% data from year-to-year, with one line following the league leader in the metric and the other line following the Stanley Cup winner. I’d been curious about this myself; certainly there are a number of different ways to express the value of the metric, but this particular one could be interesting because it toes the line between what the Old and New Guard feel is important in this kind of analysis.

Well, I was right that it would be interesting:
Continue reading