NHL Analytic Teams’ State of the Union

Pure-mathematics-formulæ-blackboard

Fandom means a lot of different things to different people. But one thing unites us all: we hope our favorite team will win, and spend a great deal of time thinking how they can.

For those of us who dig a little deeper on the “how” side and use analytics, we hope that our work will eventually make its way to a front office. In some ways, it already has: numerous “hockey bloggers” hirings have been made recently.

But how many and for which teams?

With some research, I’ve culled a working document on all analytics hires for NHL teams and how they may be using analytics. The following descriptions comes from a variety of sources including Craig Custance’s Great Analytics Rankings [Paywall], fellow bloggers from across the internet, media reports, word of mouth and anonymous insiders.

It should be noted that just because a team has made an “analytics hiring”, it doesn’t necessarily mean that they value their input or use the analysis provided properly. In fact, hires can be made simply for PR reasons, and some teams may even give analytics tasks as secondary duties to staff members who do not posses any formal background in the subject. Teams may also have hired private firms providing proprietary data, which in reality may not provide any tangible, verifiable value than what is free and readily available online.

Continue reading

The Greatest Tank Battle: Penguins vs. Devils, 1983-84

File:Mario Lemieux 1984.jpg

Mario Lemieux with Laval of the QMJHL in 1984; photo by http://www.lhjmq.qc.ca/ via Wikimedia Commons

What do you do when a 6’4″ QMJHL forward who scored 184 points in 66 games in his last underage season scores at a 282-point pace in his draft year? You tank — you tank as hard as you can. In the latter half of the 1983-84 season, the Pittsburgh Penguins and New Jersey Devils were in an unspoken, pitched battle for the bottom of the league and everybody knew it. While the Penguins would ultimately win out, sputtering to a 16-58-6 record (“good” for 38 points in the standings) to New Jersey’s 17-56-7 (41 points), the two teams were coming from distinctly different franchise backgrounds.

Using information from our new interactive charts, we can see what set these teams apart, and led them to take different paths in what turned out to be a pretty wild race to the cellar of the NHL.

Continue reading

2014-2015 Season Preview: The Metro Division

Image from Michael Miller via Wikimedia Commons

Last year, in preseason, the Metro Division, was considered by far the strongest division in the East and the likely bet to take both Wild Cards.  The whole division, minus the Pens, promptly started the season by getting hammered, only recovering later in the season to grab one of the two wild cards.

This year again, the top 5 of the division looks strong enough to take two wild cards.  The bottom 3, particularly the bottom 2, are very weak, but the top 5 is strong and near evenly matched such that they could wind up in any order.  But, given the requirement to project the division, these are how I believe the division should finish up, from worst to first:

Continue reading

Revisiting the NHL Regression Predictions from January 1st

Photo by “User:Zucc63” via Wikimedia Commons, modified by author

If you’ll remember, one of the inaugural posts here was a regression prediction piece, using a combination of PDO and Fenwick Close to see who might improve or decline over the latter half of the season. I decided to put together a table of the teams I predicted would negatively or positively regress, just using the aforementioned data:

If you’ll remember, I pegged Anaheim, Colorado, Montreal, Phoenix, Toronto, and Washington for negative regression, and Florida and New Jersey for positive regression. So, even with really rudimentary predictors, this season I was able to be fairly successful building predictions from a half-season sample for the remaining season. In previous years, the fancy stats folks usually picked the much more obvious targets (Toronto being the big one this year), but it’s very possible to go further if you wanted.

NHL Career Charting: The Pre-BTN Era and What We Can Still Do With Historical Data

File:BrendanShanahan.jpg

Photo by “IrisKawling”, via Wikimedia Commons

Hockey statistics have always been fairly historically limited; most of the so-called “fancy stats” have only been tracked (and easily track-able league-wide) back through the 2007-08 season. The prior years have a veil of fog over them, though there is fairly decent shot data going all the way back to the 1952-53 season (thanks to the Hockey Summary Project; I’ve been able to bring the data together), good game-by-game individual player data going back to 1987-88 (thanks to Hockey Reference via Dan Diamond & Associates), and gradually-improving TOI data going back to 1997-98 (thanks to NHL.com and Hockey Reference). Unfortunately, this has lead to a relative dearth of research into the years of the “Pre-BTN” Era, so-called because 2007-08 was the first year we received in-depth, league-wide data from Gabe Desjardins’ Behind the Net stats site and Vic Ferrari’s timeonice.com.

Having a background in history, and also having grown up as a fan of the league in this grey statistical era, I have spent the last couple years trying to compile and present statistics from the Pre-BTN Era in ways that can help provide a window into those years (and possibly inform our understanding of the present-day game). I’m somewhat indebted to Iain Fyffe, a guy who’s been doing similar yeoman’s work much longer than myself at Hockey Prospectus, though more recently he’s been sharing his work at his own site, Hockey Historysis.

The fact of the matter is that there is actually an enormous amount of information out there, and more importantly with graph work we can really do some interesting things. First case in-point is what I call “career charting;” essentially, charting a player’s shots in a game relative to their team’s shots in those same games. Using the metric %TSh, or percentage of team shots, this provides an interesting glimpse into player contributions, workload, and development in the Pre-BTN Era. Adding some artistic (and informational flourish), I present to you Pierre Turgeon:

Continue reading

Crystal Blue Regression: Leafs, Avalanche, Ducks, Among the Most Likely to Regress in 2014

Image

Picture taken by Sarah Connors, posted to Flickr – via Wikimedia Commons

With the Winter Classic coming up, or should I say the Winter Classics since the NHL handles marketing success like the kid who found the cookie jar, we also ring in the rough middle of the season. It’s a time for reflection, maybe a chance to re-assess your decisions, lifestyles; and if you’re analyzing the NHL, it’s the perfect time to recognize trends that may or may not continue. Also known as “regression,” here I’m dealing with a concept everyone understands to a degree; you invoke it when you see a friend sink a half-court shot in basketball and say, “Yeah, bet you can’t do that again.” The trend, supported by a history of not making half-court shots, suggests that it is unlikely for your friend to sink the half-court shot, even if they recently made one. In the NHL, possession stats like Corsi are considered better predictors of future success than stats that can be influenced more greatly by luck, like goals (and, consequently, wins), shooting percentage, or save percentage. Much like your friend and their half-court shot, there are teams that are defying their odds (established by possession measures) to succeed, which can easily happen with less than a half-year of performance.

Continue reading