Another Shot Quality Quandary: League Variance, Evolution, Error

File:Alberti-Young-Hockey-Players-alb11bw.jpg

Young Hockey Players” by Piotr Alberti, via Wikimedia Commons

Hockey statistical analysis isn’t really capturing all of hockey, or seeking to package it; it’s about getting as close we can to the essence of the thing. All the ideas, conclusions, best practices that we’ve cobbled together over the years give us an approximation of the actions a team, a player, or a fan could make going forward to better grasp the game.

Within this fact lies the greatest bone of contention for the hockey stats crowd, and the frequent refrain of critics who can only chirp from the sidelines. “Have you considered measuring this? Have you considered measuring that? Have you removed the games when the Rangers lacked sufficient compete level? Have you adjusted for Hamburglar’s pre- and post-lifetime gift certificate to McDonald’s?” While some of these adjustments may be worthy, and others utterly ridiculous, “shot quality” has been a persistent critique of the use of all shot attempts.

Admittedly, there are some interesting developments in Ryan Stimson’s work on puck movement, which might shed some light on an area yet explored. Though it’s not necessarily his focus, I think his data can give us an idea of how possession is maintained effectively. The remainder of shot quality, or at least the way it’s being conceptualized, lies in these remaining areas: type of shot, where shot is located on net, screened/tipped/direct/clear-look shot data, shooting talent, and where on the ice the shot is taken from. The former two, according to Gabe Desjardins, didn’t really demonstrate themselves when he came across the data (nor when I asked him a month ago). Shot location has already died a partial death by Desjardins, who found it seems to have minimal impact on save percentage, though he also found a team talent component, to the tune of differences ranging up to 0.7 feet.

Let me put the location stuff to bed the rest of the way.

Continue reading

When the Trade Market and Draft Market intersect and how to exploit them

Image Courtesy of WikiMedia Commons

The biggest incentive for teams to employ analytics is exploiting market inefficiencies. Whenever you can exploit an inefficiency in a market it gives your team a comparative advantage over the others. In other words, you raise your team’s chances of being a successful club.

I took a look at previous work from Eric Tulsky and Michael Schuckers on draft pick value and used them to show how one may use statistical analysis to take advantage of market inefficiencies.

Let’s take a look.

Continue reading

The NHL Systems Argument: Comparing Bruce Boudreau, Alain Vigneault, & Lindy Ruff

Bruce-Alain Ruff. Looks like the ghost of Gene Hackman. You're welcome for the nightmares.  Composite of images by

“Bruce-Alain Ruff. Looks like the ghost of Gene Hackman. You’re welcome for the nightmares.” Composite of images by “DSCF1837” (Vigneault), Michael Miller (Boudreau), and Arnold C. (Ruff), via Wikimedia Commons*

Systems are without question the most elusive, yet most important, part of our understanding of hockey and the application of analytics. What works and what doesn’t? To what degree can a coach or team apply a strategy?

This led me to think about where we might most convincingly see evidence of a system at work. In the past, we here at HG have had a lot of skepticism about a number of elements of a “system.” For example, Garik’s pieces on competition-matching lines (here and here) and the use of the “defensive shell” to protect a lead, neither of which presented themselves as particularly effective ways of looking at or implementing systems. I have shown in the past that attempts to use extreme deployment in terms of zone starts doesn’t move the needle beyond a 60-40 range of possession, the range of shooting shares for forwards and defensemen haven’t seemed to change much over the last 20-25 years, and a plotting of even-strength shots-for with top and bottom possession teams do not suggest a major difference in shot location.

So where to go from there? Eventually, I decided that we need to get to an extreme enough situation, with robust enough data, where a team might have the best opportunity to dictate a system — in other words, we need to look at the powerplay. The most ideal opportunity for comparison, given the workable data for me, comes from the coaching careers since 2008-09 of Bruce Boudreau, Lindy Ruff, and Alain Vigneault. They all provide at least a couple of seasons with different teams, in addition to a robust set of coaching data from 2008 to the present. Let’s see what we can see…

Continue reading