## Namita Nandakumar @nnstats

Does
(NHL Player)
Size Matter?



# Some Questions

Does height and/or weight matter for...

- being drafted?
- playing in the NHL?
- playing well in the NHL?
- excelling in the playoffs?

# Some Reminders

### It's possible that size affects :

player quality

### which affects:

- player opportunity
- performance conditional on opportunity

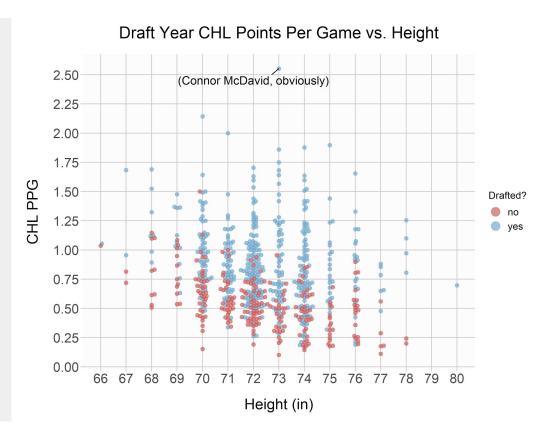
scouting + team perception of player quality

### which affects:

playeropportunity

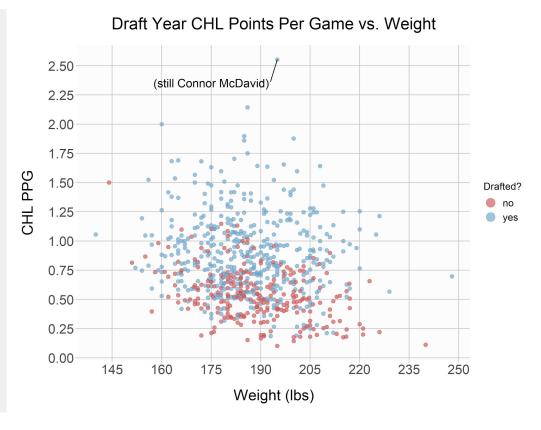
# Some Questions Written in Math

Does height and/or weight matter for...


- P(drafted I ranked)
- E(NHL games played I drafted)
- □ E(NHL value | NHL)
- P(good in playoffs | NHL)

# 1. P(drafted | ranked)

### **NORTH AMERICAN SKATERS**


| Final Rank↑ | Midterm Rank | Player           | Height | Weight |
|-------------|--------------|------------------|--------|--------|
| 1           | 1            | MCDAVID, CONNOR  | 6' 1"  | 195    |
| 2           | 2            | EICHEL, JACK     | 6' 2"  | 196    |
| 3           | 3            | HANIFIN, NOAH    | 6' 3"  | 203    |
| 4           | 5            | STROME, DYLAN    | 6' 3"  | 185    |
| 5           | 4            | CROUSE, LAWSON   | 6' 4"  | 215    |
| 6           | 7            | MARNER, MITCHELL | 5' 11" | 160    |
| 7           | 10           | PROVOROV, IVAN   | 6'0"   | 201    |
| 8           | 8            | ZACHA, PAVEL     | 6' 3"  | 210    |

- 2010-19 draftclasses
- ranked by NHLCentral Scouting
- first year eligibleCanadian HockeyLeague forwards
- 10+ games played in draft year

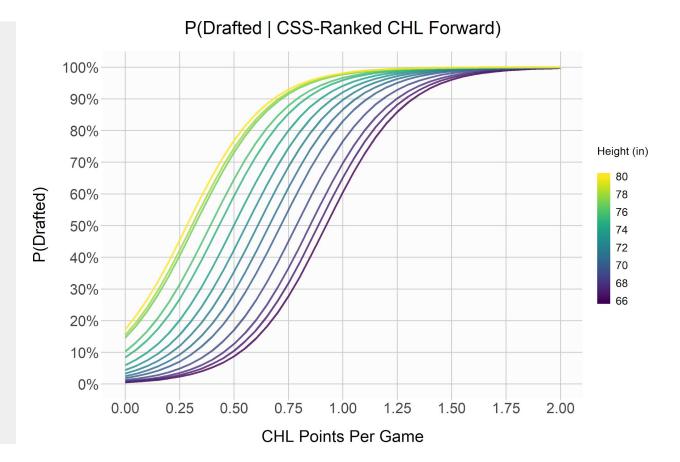


Let's compare apples to apples.

- 2010-19 draftclasses
- ranked by NHLCentral Scouting
- first year eligibleCanadian HockeyLeague forwards
- 10+ games played in draft year



Let's compare apples to apples.


# It's time for logistic regression.

# What does this output mean?

- l'm literally asking.
- We can see that height and weight are "significant" predictors of being drafted but there's much more to understand here!

```
Call:
glm(formula = drafted ~ height + weight + pts_gp, family = "binomial",
   data = css_chl_info_clean)
Deviance Residuals:
   Min
             10 Median
                                     Max
-3.1871 -0.8235 0.2803
                         0.7593
                                 2.2044
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -28.469102  4.180632  -6.810  9.78e-12 ***
            height
       -0.023294 0.008293 -2.809 0.00497 **
weight
          5.533241 0.471307 11.740 < 2e-16 ***
pts_gp
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 916.71 on 695 degrees of freedom
Residual deviance: 662.12 on 692 degrees of freedom
AIC: 670.12
Number of Fisher Scoring iterations: 5
```

Let's create a toy dataset of every height + the median weight for that height + the model prediction and then graph it:



And then let's find the PPG rate that gives you ~50/50 odds of being drafted based on your height + median weight:

| Height | 5'6  | 5'7  | 5'8  | 5'9  | 5'10 | 5'11 | 6'0  | 6'1  | 6'2  | 6'3  | 6'4  | 6'5  | 6'6  |
|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| PPG    | 0.95 | 0.90 | 0.85 | 0.80 | 0.75 | 0.70 | 0.65 | 0.60 | 0.50 | 0.45 | 0.40 | 0.35 | 0.35 |

And finally let's check out the model calibration:

| Probability<br>Bin | 0-10<br>% | 10-20<br>% | 20-30<br>% | 30-40<br>% | 40-50<br>% | 50-60<br>% | 60-70<br>% | 70-80<br>% | 80-90<br>% | 90-100 |
|--------------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|--------|
| % Drafted          | 17%       | 19%        | 24%        | 32%        | 46%        | 54%        | 68%        | 74%        | 84%        | 97%    |
| # of Guys          | 6         | 43         | 68         | 65         | 63         | 56         | 65         | 78         | 96         | 156    |

# 2. E(NHL GP | drafted)

3. E(value | NHL)

Working with subsets of draft data is interesting but limiting...




How do we build models for 18-year-old Canadian wingers + 19-year-old American goalies + 20-year-old Swedish defensemen?

# Gradient-boosted trees can help.

Tree models
allow for all sorts
of variable

It's a key benefit of "machine learning".

interactions.

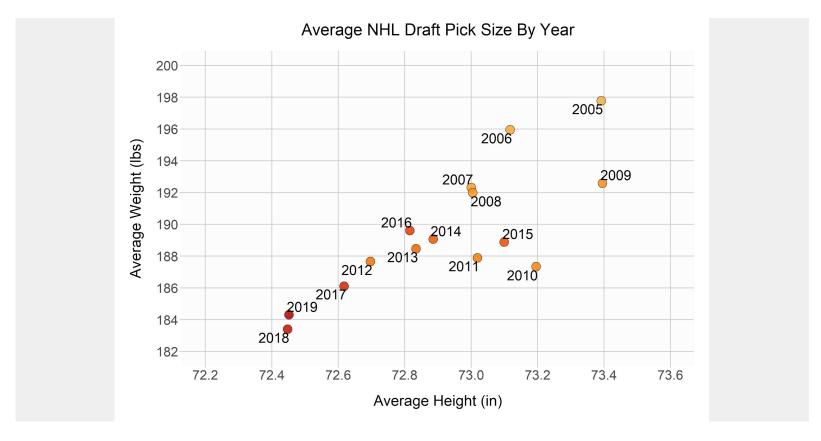


We can use xgboost to predict:

- total NHL games played within 7 seasons of being drafted
- career NHL <u>Point Shares</u> per game for players with 10+ career NHL games played


# This doesn't have to be an entirely black box!

### model details:


- trained on age, height, weight, position, draft pick #, Euro/NA in 2005-11 drafts
- hyperparameterschosen to minimize5-fold CV testing error

We can evaluate our predictions by:

- Making 8 copies of each prospect.
- Pretending they have a different height (5'9" 6'4") and weight (170 210 lbs) each time.
- Generating xgboost predictions.
- Comparing each model's predictions across hypothetical prospect sizes.



Individual Conditional Expectation Plots



Teams may already be reacting...

## 4. P(good in playoffs | NHL)

### [REDACTED]

One of the reasons NHL scouts still hesitate to take players under 5-10 high in the draft is the concern that come playoff time it gets harder for them to through the checking. Gaudreau and Arvidsson combined, for example, have 9 goals in 74 playoff games. They scored 70 this yr.

6:54 PM · Apr 20, 2019 · Twitter Web Client

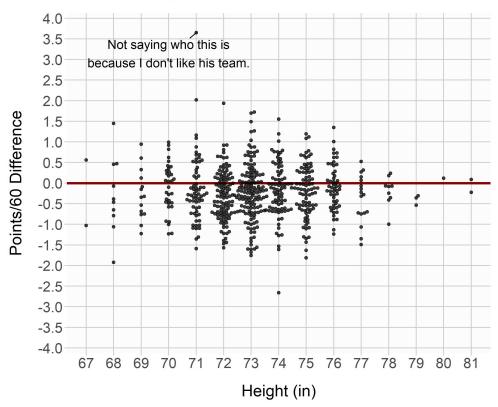


fact check: there's 8 fwds < 5'10" who've played 50+ min in the playoffs this season.

Gaudreau, Arvidsson, Marchand, T. Johnson have fewer goals/60 in the playoffs.

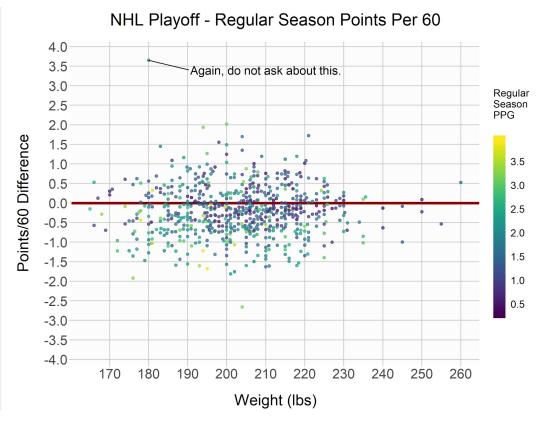
Atkinson, Gourde, Marchessault, Zuccarello have more goals/60 in the playoffs.

you can cherry pick any narrative.


# ...l could've done better.

I stand by my rebuttal philosophically, but it was far from comprehensive.

- I didn't check the baseline difference between regular season and playoff performance.
- I used a random height cutoff and only looked at last season's playoffs.
- It was straight up 8 dudes.


- 2015-19 seasons
- players with 41+
   regular season
   games and 10+
   playoff games
- no correlation
- try to regress that,I dare you

### NHL Playoff - Regular Season Points Per 60



A closer, more comprehensive look...

## Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.2577357 1.0259216 -0.251 0.802 height -0.0019284 0.0187198 -0.103 0.918 0.0009384 0.0026534 0.724 weight 0.354 Residual standard error: 0.6577 on 626 degrees of freedom Multiple R-squared: 0.0003, Adjusted R-squared: -0.002894 F-statistic: 0.09394 on 2 and 626 DF, p-value: 0.9104



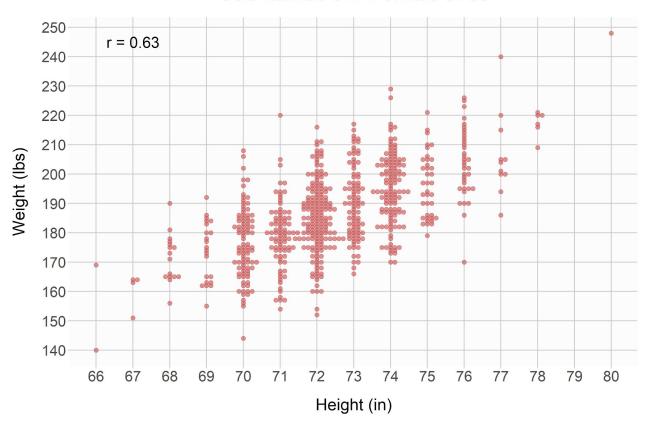
Even closer...

# So what was the point?

## Nothing.

- Size matters for NHLers sometimes, in part because powerful people think so.
- Null results might seem boring but you can still use them to fight people on the internet.
- A data scientist's job is to answer every question with the phrase "It depends."

# Thank you!


Data via Hockey Reference + NHL.com (yeah, seriously).

Tweeting this out @nnstats.

## Appendix:

 As one might expect, heights and weights are correlated.

#### **CSS-Ranked CHL Forward Sizes**

