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Reproducible Research with nflscrapR

Recent work in football analytics is not easily reproducible:

Reliance on proprietary and costly data sources

Data quality relies on potentially biased human judgement

nflscrapR:

R package created by Maksim Horowitz to enable easy data
access and promote reproducible NFL research

Collects play-by-play, game, roster data from NFL.com

Data is available for all games starting in 2009 (soon 1998!)

Available on Github, install with:
devtools::install github(repo=maksimhorowitz/nflscrapR)
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Principles of nflWAR

Publicly available data, code, and results; reproducible

Interpretable in terms of game outcomes (e.g points, wins)

Account for uncertainty (football is a small sample game)

Allow for objective decision-making by coaches/management
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Our nflWAR Framework

Create open-source software for the collection of NFL data
see R package nflscrapR – Horowitz, Yurko, Ventura (2017)

Properly model plays to determine play value

Use play valuations to model player value

Make player evaluation results useful and interpretable:

– Evaluate relative to replacement level

– Convert to a wins scale

– Estimate the uncertainty in our evaluations of players
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How to Value Plays?

Suppose it’s 4th down with 4 yards to go from the 40 yard line.

You have three choices:

Punt:
You are sacrificing possession, but gaining (some) field position

Attempt a field goal:
You are sacrificing possession, but (possibly) gaining three points

“Go for it”:
You try to advance the ball four yards to maintain possession

Ron Yurko (@Stat Ron) nflWAR RITSAC 2018 5 / 28



How to Value Plays?

Expected Points (EP): Value of play is in terms of
E (points of next scoring play)

How many points have teams scored when in similar situations?
(yard line, down, yards to go, etc.)

Several ways to model this

Our approach: multinomial logistic regression

Win Probability (WP): Value of play is in terms of P(Win)

Have teams in similar situations won the game?

Common approach is logistic regression

Our approach: generalized additive model (GAM)

Can apply nflWAR framework to both (or any measure of play value)
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Superbowl LII Win Probability Chart
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Estimating the Value of a Play

Win Probability Added (WPA) or Expected Points Added (EPA)

Using air yards → airWPA/airEPA and yacWPA/yacEPA
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How to Evaluate Players?

Comment from Pittsburgh Post-Gazette article on nflscrapR

Football is complex, need to divide credit, evaluate using wins!
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Division of Credit

Publicly available data only includes those directly involved:

Passing:
Players: passer, targeted receiver, tackler(s), and interceptor
Context: air yards, yards after catch, location (left, middle,
right), and if the passer was hit on the play

Rushing:
Players: rusher and tackler(s)
Context: run gap (end, tackle, guard, middle) and direction
(left, middle, right)
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Multilevel Modeling

Growing in popularity (and rightfully so):

“Multilevel Regression as Default” - Richard McElreath

Natural approach for data with group structure, and different
levels of variation within each group
e.g. QBs have more pass attempts than receivers have targets

Every play is a repeated measure of performance

Hockey example: WAR-on-ice (Thomas et al., 2013)

Baseball example: Deserved Run Average (Judge et al., 2015)
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Multilevel Modeling

Example of varying-intercept model:

WPAi ∼ Normal(Qq[i ] + Cc[i ] + Xi · β, σ2
WPA), for i = 1, . . . , n plays

Key feature is the groups are given a model - treating the levels of
groups as similar to one another with partial pooling

Qq ∼ Normal(µQ , σ
2
Q), for q = 1, . . . ,# of QBs,

Cc ∼ Normal(µC , σ
2
C ), for c = 1, . . . ,# of receivers.

Unlike linear regression, no longer assuming independence

Provides estimates for average play effects while providing necessary
shrinkage towards the group averages
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nflWAR Modeling

Use varying-intercepts for each of the grouped variables

With location and gap, create Team-side-gap as O-line proxy
e.g. PIT-left-end, PIT-left-tackle, PIT-left-guard, PIT-middle

Separate passing and rushing with different grouped variables

Passing: Quarterback, receiver, defensive team

Rushing: Team-side-gap, rusher, defensive team

Each group intercept is an estimate for an individual or team effect,

individual points/probability added (iPA)

team points/probability added (tPA)

Multiply intercepts by attempts to get points/probability above
average (iPAA/tPAA)
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nflWAR Modeling

Four different models to measure three skills:

Two separate models for QB and non-QB rushing

Two separate passing models for air and yac

Models adjust for team strength using opposite type of EPA per
attempt (e.g. rushing models adjust for passing strength)

Every player has iPArush, iPAair , and iPAyac estimates
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QB Air vs Yac Efficiency in 2017
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RB Receiving vs Rushing Efficiency in 2017
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Comparing Team Offensive Line Performance 2016-17

Ron Yurko (@Stat Ron) nflWAR RITSAC 2018 17 / 28



Arriving at WAR

Evaluate relative to “shadow” replacement player based on rosters
similar to openWAR (Baumer et al., 2015)

Results in individual points above replacement (iPAR)

Convert points to wins using regression approach

Points per Win =
1

β̂Score Diff

Two types of WAR:

EPA-based WAR =
iPAR

Points per Win

WPA-based WAR = iPAR
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Uncertainty is Mandatory

Similar to openWAR (again!) we use a resampling strategy to
generate WAR distributions

We resample entire team drives to preserve any play-sequencing
tendencies that could affect our estimates

Following estimates are based on 1000 simulations
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Top RBs by WAR in 2017
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Selection of QB WAR Distributions in 2017
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Career WAR Leaders

B.Marshall

T.Romo

J.Jones

T.Taylor

A.Brown

C.Johnson

M.Stafford

A.Smith

M.Ryan

C.Newton

P.Manning

B.Roethlisberger

R.Wilson

P.Rivers

T.Brady

D.Brees

A.Rodgers

0 2 4 6 8 10 12 14 16 18

Total Career WAR

Position

QB

WR

WPA−Based, 2009 to 2018
Career WAR Leaders

Data from NFL.com via nflscrapR; WAR from https://github.com/ryurko/nflscrapR−data
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I’m Sorry Bills Fans

Good luck with Josh Allen!
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Recap and Future of nflWAR

Properly evaluating every play with with multinomial logistic
regression model for EP and GAM for WP

Multilevel modeling provides an intuitive way for estimating player
effects and can be extended with data containing every player on
the field for every play

Estimate the uncertainty in the different types of iPA to generate
intervals of WAR values

Naive to assume player has same effect for every play!

Refine the definition of replacement-level,
e.g. what about down specific players? QBs that rush more?
#GIVEMETRACKINGDATA
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Future of Football Analytics

Brian Burke (@bburkeESPN): father of modern football
analytics - http://www.advancedfootballanalytics.com/

Josh Hermsmeyer (@friscojosh): air yards, player stability,
routes, etc - keeps work accessible, great visualizations

Zachary Binney (@zbinney NFLinj): NFL injury expert

Eric Eager (@PFF EricEager): Pro Football Focus collects
everything - just don’t look at their barcharts...

...there is another...

Ron Yurko (@Stat Ron) nflWAR RITSAC 2018 25 / 28



Future of Football Analytics

Brian Burke (@bburkeESPN): father of modern football
analytics - http://www.advancedfootballanalytics.com/

Josh Hermsmeyer (@friscojosh): air yards, player stability,
routes, etc - keeps work accessible, great visualizations

Zachary Binney (@zbinney NFLinj): NFL injury expert

Eric Eager (@PFF EricEager): Pro Football Focus collects
everything - just don’t look at their barcharts...

...there is another...

Ron Yurko (@Stat Ron) nflWAR RITSAC 2018 25 / 28



A New Hope

Michael Lopez (@StatsbyLopez) NFL Director of Data & Analytics
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Carnegie Mellon Sports Analytics Conference

Clear your calendars for Oct 19-20th!

And visit https://cmusportsanalytics.com/conference2018.html

for more information! #CMSAC18
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Expected Points Relationships
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Convert to Wins

“Wins & Point Differential in the NFL” - (Zhou & Ventura, 2017)
(CMU Statistics & Data Science freshman research project)
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Relative to Replacement Level

Following an approach similar to openWAR (Baumer et al., 2015),
defining replacement level based on roster

For each position sort by number of attempts, separate replacement
level for rushing and receiving

Player i ′s iPAAi ,total = iPAAi ,rush + iPAAi ,air + iPAAi ,yac

Creates a replacement-level iPAA that “shadows” a player’s
performance, denote as iPAAreplacement

i

Player i ′s individual points above replacement (iPAR) as:

iPARi = iPAAi ,total − iPAAreplacement
i ,total
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