Edgar

Micah Blake McCurdy micah@hockeyviz.com

Rochester NY RIT Hockey Analytics Conference October 20, 2017

Models, As Abstractly As Possible

A *model* is a way to gather some important aspects of an interesting thing, so that we can benefit.

- Model cars for children
- Models from physics:

- Model cars for children
- ► Models from physics:
 - Planetary motion
 - Friction
 - Relativity

- Model cars for children
- Models from physics:
 - Planetary motion
 - Friction
 - Relativity
- Wind-tunnel models from aerodynamics design
- Mental models for everyday life
 - Excitement
 - Danger
- Statistical models from the social sciences:

- Model cars for children
- Models from physics:
 - Planetary motion
 - Friction
 - Relativity
- Wind-tunnel models from aerodynamics design
- Mental models for everyday life
 - Excitement
 - Danger
- Statistical models from the social sciences:
 - Behavioural economics
 - Criminology

- Model cars for children
- Models from physics:
 - Planetary motion
 - Friction
 - Relativity
- Wind-tunnel models from aerodynamics design
- Mental models for everyday life
 - Excitement
 - Danger
- Statistical models from the social sciences:
 - Behavioural economics
 - Criminology
 - Hockey!

What Makes A Model Good?

- Accuracy
- Efficiency
- Interpretability

Relevance

Model Inputs \longrightarrow ??? \longrightarrow

Model outputs

Relevance

Model Classification

▶ When the inputs are combined by minimizing some function, that makes the model *statistical*. Most of the best hockey models (Luszczyszyn,Perry) are statistical.

Model Classification

- When the inputs are combined by minimizing some function, that makes the model statistical. Most of the best hockey models (Luszczyszyn, Perry) are statistical.
- ▶ When the inputs are combined by some encoding of the mechanics of the thing being modelled, that makes the model phenomenological.

Model Classification

- When the inputs are combined by minimizing some function, that makes the model statistical. Most of the best hockey models (Luszczyszyn, Perry) are statistical.
- When the inputs are combined by some encoding of the mechanics of the thing being modelled, that makes the model phenomenological.
 - ▶ When the combining is done systematically with oversight, that makes the model *scientific*.

Edgar

I made what I think is a "scientific" model in this sense and I called it: Edgar

Which aspects are important?

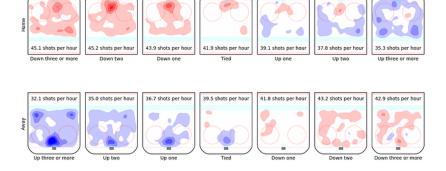
- Unblocked shot rates and their locations.
- Penalty rates
- Shooting talent
- Goaltending talent
- Who takes the shots
- Rest

I estimate them all with statistics.

Isolating Player Ability

Player Isolate, Erik Karlsson

Relative to League Shooting: +0.8%


Even-Strength Defence

Penalties Drawn: -30% Penalties Taken: -27%

Isolating Player Ability: Shot Maps

Shot rate maps are adjusted for score

Some day: adjusted for teammates (and then maybe zone usage and competition)

Shooting and Goaltending Abilities

All measured relative to where shots are taken.

Shooters

Excellent shooters:

```
\begin{array}{ccc} \text{Jake Guentzel} & +6.5\% \\ \text{Patrik Laine} & +6.2\% \\ \text{Sven Baertschi} & +5.1\% \\ \text{Jannik Hansen} & +4.5\% \end{array}
```

(Also Ho-Sang, Malkin, Barkov, Gourde, Athanasiou, Oshie)

Regressed 2/3 of the way to the mean

Goalies

Excellent goalies:

```
\begin{array}{ccc} \text{Brayden Holtby} & +1.3\% \\ \text{Matt Murray} & +1.2\% \\ \text{Carey Price} & +1.2\% \\ \text{Henrik Lundqvist} & +1.2\% \end{array}
```

(Also Smith, Grubauer, Crawford, Gibson, Reimer, Bobrovsky)

Regressed 1/2 of the way to the mean

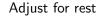
Additional Sneakiness

Penalty Rates and Shot Propensities: Untouched! (for now)

Rookies treated as league average, except for a chosen few. (estimated by Hannah Stuart)

Some ad-hoc regression for people with very little relevant icetime.

Isolating Team Abilities


Team Isolate, OTT

Estimate team rosters

Relative to League Shooting: +0.29% Goaltending: +0.21% Penalties Drawn: -7% Penalties Taken: -3%

Simulation Mechanism

Model shots and penalties as Poisson processes with the measured rates.

For every shot taken:

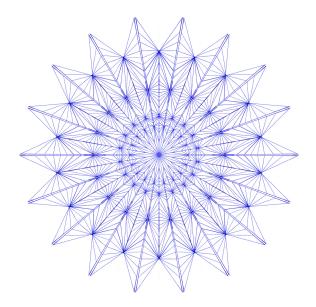
- Choose a location
- Choose a shooter
- Adjust for shooting talent
- Adjust for goalie
- See if it's a goal

And so on, for sixty or perhaps sixty-five minutes.

Information in Excess of Guessing

My preferred measure of accuracy for single games:

 $100 \log_2 2p$


where p is the probability for the outcome that happened.

Really just log-loss, scaled onto 0 (guessing) and 100 (perfection).

Results From 2016-2017

		Information In Excess
		of Guessing
Creator	Model	(per game)
Perry	Salad	5.03
Nandakumar	Feline Frenzy	4.65
Luszczyszyn	Preszczyszyn	4.36
M.	Edgar	4.13
Sprigings	DTMAH	4.10
M.	Cordelia	2.11

Thanks!

